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Resonance conditions for an antiferromagnet whose sublattice magnetization vectors are canted by the 
Dzyaloshinsky-Moriya interaction are generalized to include an arbitrary angle 0 between the applied mag­
netic field and the hard direction of magnetization, and the resulting normal modes are discussed. A cor­
rection term to the low-frequency resonance expressions derived by Pincus may be appreciable at higher mag­
netic fields and small 6. For suitable parameters, this term permits the measurement of all pertinent effective 
fields by resonance experiments. It is furthermore shown that demagnetization effects are negligible. Micro­
wave resonance experiments as a function of field (to 60 kG), angle, and frequency (12 to 35 Gc/sec) on syn­
thetic single crystals of aFe203 failed to reveal a departure from the Pincus relation, thus leading to the con­
clusion that HA/HE < 10~2. 

I. INTRODUCTION 

MAGNETIZATION measurements reveal that 
many systems, which are known from neutron 

diffraction studies to be antiferromagnetic, exhibit a 
weak ferromagnetism, with a moment several orders 
of magnitude smaller than the sublattice magnetiza­
tion. This has been attributed to a canting of the sub-
lattice moments caused by one or a combination of 
two effects: single-ion magnetocrystalline anisotropy 
as is discussed by Moriya,1 which exists in2 KMnF3 

and NiF2,
3 or a spin-spin interaction of the form 

D' (SiXS2), which is found i n a F e ^ , MnCO*, C0CO3,4 

CrF3, and possibly FeF3 and CuCl2- 2H20.5'6 This latter 
interaction was proposed by Dzyaloshinsky7 on the 
basis of a thermodynamic argument, and its physical 
origin has been shown by Moriya5 to be an anisotropic 
superexchange proportional to the spin-orbit coupling 
term of the one-electron Hamiltonian. A phenomeno-
logical discussion has been given by Vonsovsky and 
Turov.8 Resonance conditions for an antiferromagnet 
with this Dzyaloshinsky-Moriya coupling have been 
formulated by many authors,9™12 but the first paper to 
point out the importance of the small anisotropy in 
the easy plane was that of Pincus.11 Their results are 
extended in this paper. 

* National Science Foundation Predoctoral Fellow. 
f Supported by the U. S. Air Force Office of Scientific Research. 
J T . Moriya, Phys. Rev. 117, 635 (1960). 
2 A. J. Heeger, 0. Beckman, and A. M. Portis, Phys. Rev. 123, 

1652 (1961). 
3 L. M. Matarrese and J. W. Stout, Phys. Rev. 94, 1792 (1954). 
4 A. S. Borovik-Romanov and M. P. Orlova, Zh. Eksperim. i 

Teor. Fiz. 31, 579 (1956) [English transl.: Soviet Phys.—JETP 
4, 531 (1957)]. 

5 T . Moriya, Phys. Rev. 120, 91 (1960). 
6 R. J. Joenk, Phys. Rev. 126, 565 (1962); 127, 2287E (1962). 
7 1 . Dzyaloshinsky, Phys. Chem. Solids 4, 241 (1958). 
8 S. V. Vonsovsky and E. A. Turov, J. Appl. Phys. 30, 95 

(1959). 
9 A. S. Borovik-Romanov, Zh. Eksperim. i Teor. Fiz. 36, 766 

(1959) [English transl.: Soviet Phys.—JETP 9, 539 (1959)]. 
10 K. Motizuki, presented at the Annual Meeting of the Phys. 

Soc. Japan, April 1960, quoted in Ref. 19. 
11 P. Pincus, Phys. Rev. Letters 5, 13 (1960). 
12 E. A. Turov and N. G. Guseinov, Zh. Eksperim. i Teor. Fiz. 

38, 1326 (1960) [English transl.: Soviet Phys.—JETP 11, 955 
(I960)]. 

Expressions derived by Pincus for o:Fe203, a rhom-
bohedral crystal which above the Morin temperature 
at — 14°C has its sublattice moments lying in the 
[111] or ' V plane, indicate a zero-field splitting of the 
modes such that one exists in the 3-cm microwave 
region and the other in the submillimeter region. His 
relations for the system in an externally applied mag­
netic field H0 were given for the case of H0 perpen­
dicular to [111]; i.e., 0=90°. Extension of these rela­
tions to arbitrary 0 by substituting Ho sinfl for HQ has 
been made by several authors in order to compare 
their low-frequency resonance data with the theory. 
Such a procedure leads to equations which indicate 
that this resonance is not observable at finite fields 
for 0=0. We shall show that an additional term be­
comes appreciable when 0 is small, so that in fact 
resonance could be achieved at finite fields. An addi­
tional term also appears in the high-frequency ex­
pression, which then agrees with the prediction of 
Turov and Guseinov12,13 [their low-frequency expres­
sion does not include the influence of the important 
(111) plane anisotropy]. In addition to deriving the 
resonances for arbitrary angle, we show that demag­
netizing effects are small even for this case of weak 
ferromagnetism and the normal modes are similar to 
those in the hexagonal antiferromagnet CsMnF3.

14 

In an attempt to observe the presence of the correc­
tion term to the low-frequency Pincus equation, room-
temperature resonance experiments on synthetic single 
crystal aFezOs have been performed at various 0; 
however, the value of HA/HE for this system is ap­
parently not sufficiently large to permit the term to be 
seen with the fields employed (see note added in proof). 

II. RESONANCE CONDITIONS 

We shall use the molecular field approximation and 
notation in a manner similar to that employed by 
Pincus.11 We consider, as shown in Fig. 1, two magnetic 

13 H. J. Fink and D. Shaltiel, Phys. Rev. 130, 627 (1963). 
14 K. Lee, A. M. Portis, and G. L. Witt, Phys. Rev. 132, 144 

(1963). 
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FIG. 1. Notation describing the coupled sublattice magnetiza­
tions MA and MB at equilibrium. The three vectors MA, tiA, and 
ZiA are mutually orthogonal as are the three vectors MB

f t\B, 
and £25, both Z\A and Z\B being parallel to the x-y plane. MA and 
M^ are at an angle \p to this plane, and their projections on the 
plane are at an angle p to the y axis. 

sublattices of magnetizations MA and MB coupled 
antiparallel by the usual symmetric exchange inter­
action expressed in pseudo-dipole form \MA • MB, con­
fined to lie in the "c" plane by an energy characterized 
by the anisotropy constant K, and oriented in that 
plane by a small anisotropy constant K\ The param­
eters X, K, and K' are taken to be positive. In addition, 
MA and MB are tipped toward each other by the 
antisymmetric exchange interaction D - M i X M s and 
out of the easy plane by the applied field H0, which is 
assumed to exert a much larger influence than the 
in-plane anisotropy so that the net moment tends to 
lie along H0. We assume there is more than twofold 
symmetry about the c axis, which according to Moriya5 

dictates that D must lie along that axis. Systems such 
as aFe203 and MnC03 actually have three equivalent 
twofold axes in the c plane, leading to a sixfold an­
isotropy in the resonance field as H0 is rotated in that 
plane. This symmetry has been observed in aFe 2 0 3 by 
Tasaki and lida,15 and for the appropriate systems can 
be included in the resonance expressions by giving the 
c-plane anisotropy constant a sin6<po dependence, where 
<po is the angle between the x axis and c-plane compo­
nent of H0.

14 We shall ignore this dependence in the 
following derivation. 

The equations of motion for the A and B sublattices 
are then 

dMA/ydt = ~ \MA X MB+MA X Ho 

- M A X [ N - ( M ^ + M * ) ] ~ - M A X ( D X M * ) 

+KMA (kX MA) - KfMy
A (j X MA), (1 A) 

dMB
/ydt=~)MBXMA+MBXlLo 

-MBXIN'(MA+MB)2+MBX(DXMA) 
+KMB (kX MB) - K'My

B (j X M B ) . (IB) 

The demagnetization tensor N is assumed to be di­
agonal with elements Nx, Ny, Nz that are not neces­
sarily equal. A more convenient notation expresses the 
energy parameters in terms of effective magnetic fields 
proportional to M, the magnitude of MA (which equals 

16 A. Tasaki and S. Iida, J. Phys. Soc. Japan 18, 1148 (1963). 

the magnitude of MB). We let HE=\M, HDM=DM, 
HA^KM, and HA

f = K'M. Typically, # t f=10 6 Oe, 
HBM^W Oe, J E ^ I O 4 Oe, and EA'^\ Oe, but varia­
tions by a factor of 10 or more from these values should 
be expected for certain systems. In the following treat­
ment we consider Ho to be the same order of magnitude 
as HDM and HA ; M is assumed to be 102 emu and N is 
of order 4=T. Some care must be employed in preserving 
various orders because the expansions for the resonance 
conditions become somewhat complicated, and the 
lowest order terms eventually cancel exactly. 

By setting the total effective field experienced by 
MA along tx

A equal to zero, we determine the equi­
librium value of <p: 

jffo sinfl COS(P+HDM cos2<p 

2HE CO^+2NXM+HA' 

HQ smd+HDM/ NXM\ 
« . ( l ) . ( 2 ) 

2HE \ HE / 

The next order term in Eq. (2) is smaller by a factor 
of 10. Similarly, the equilibrium value of \f/ requires 
the effective field along e2

A to be zero, so that 

HQ COS0 COS^ 
* = — — 

HE co^(l+cos2<p-sm2<p)+HA+2NzM 

Ho cos0/ HA+2NzM\ 
« - ( 1 — ) . (3) 

2HE \ 2HE 1 

For the stipulated fields both p and \f/ are about 10~2. 
The normal modes of the system will be obtained by 
assuming that MA and MB depart only slightly from 
these equilibrium positions, so that Eqs. (1) can be 
linearized. It is convenient to treat the vector opera­
tions of these equations in the Cartesian system; con­
sequently, for the equilibrium values of the magnetiza­
tions we have the component decomposition 

MoA'B=M(sin<£ cos^iTcos^ cos^j+sin^k). (4A,B) 

In our notation, the upper sign is associated with the 
first named index. Departures of the magnetizations 
from M0

A,i5 can be expressed in terms of the inde­
pendent variables M\A>B and M 2

A , S , the projections 
of MA>B along the vectors tiA>B and t2A,B respectively 
of Fig. 1. These departures are then projected onto 
the l, j , k coordinates as: 

$ M ^ B = (doMiA>B co$(p-M2
A'B sin^ sin<p)i 

+ (MiA>B sm<pdbM2A,B sin^ cos<p)j 
+ (M2

A ' i Jcos^)k. (5A,B) 

The Cartesian equations of motion are rather lengthy 
and will not be given here. Only terms which contain 
one power of 5MiB appear, since zero-order terms 
cancel at equilibrium, and those to higher than first 
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order are neglected. To convert back to our tiA-B 

coordinate system we use the transformations 

i=dzcos<ptiA'B— sin<p sin\pt2A,B, 

j = sin^£ijl'B±coS(p smxf/z^-3, (6A,B) 

k=COS^£2^ , B . 

Equations (1A,B) then yield the equations of motion: 

dMlL
A/dt^y{AMi

A+BM1
B-\-CMi

B), (7a) 

dM2
A/dt=y (EMiA+FM is+BM 2

B) , (7b) 

di£l
B/(U=y(-BMiA+CM1

A+AM^), (7c) 

dMf/dt=y (FMl
A - BM2A+EMiB), (7d) 

where to order 102 Oe the coefficients are 

A = 0L-W-W)HB+HJ.+ ty cos0+ V smd)H0 

+2<pHDM+NM+HA', 
B^I^HE—^HDM, 

C=i\+W-mHa+NJ£, (8) 

E= ( - 1+W-+U2)HE- (^ cos0+ <p sin<?)#0 

-2<pHDit-Nja-HA', 
F= {\-$<?+W)BB+2<PHJ>M+NJ£. 

Equations (7) can be simplified by substituting new 
variables defined by 

m^={MiA±MxB)/2, 

m2
±=(Mi

A±M2B)/2, 

so that the equations of motion become 

thi±/y= lzBm{f+ {A±C)m2
±, 

ihi±.ly=^Bm?Jr (doF+E)mi^. 

Differentiating and combining terms, we obtain 

mtk/y*=[(A±C)(E±F)-Bi]m1±?F2BAm2
i:, 

«r t / 7 2 = UA±Q (E±F)-B2lnh±=F2BEm{f. 

(9) 

(10) 

(11) 

Recognizing that A~E to order 106 Oe, we can set 
BE—BA. Furthermore the B2 terms in the brackets 
can be neglected, so that 

where 
fnlt2~/y2= —$mit<rJri)$m2ti

r, 

a=-(i4+O(£+20, 
P=-(A-C)(E-F), 

V=2BA/I3^HQ2 sin0 cos0/0. 

(12) 

(13) 

(14) 

The equations for Wi+ and m2~ are thereby decoupled 
from the equations for m f and m2

+. It is apparent 
that permitting Ho to be at an arbitrary angle has 
coupled these variables in pairs, and that when 0=0 
or 7r/2 or when ZZo=0, the m^ are the normal modes. 
These two sets of equations (12) have identical secular 

equations with eigenvalues approximately given by 

(o)i/y)2=a+7j20, 

( c o 2 / 7 ) 2 = / 5 ( l - ^ 2 ) . 
(15) 

Expanding these, we obtain 

(COX/T)2- {HO $md(H0 sind+HDM) (1-NXM/HE) 
+2HEHA'+HAHo2(cos2d-siri2d)/2HE 

~HAHDMHo sw6/2HE 

+HoA sin20 cos2d/2HEHA} (16) 

—Ho sm6(Ho sinO+HDM) 
+2HEHA'+HAHo2 cos*d/2HE, (17) 

M7)
2^2HEHA+HDM(Ho $md+HDM) 

+H0
2 cos2d+2NxMHA. (18) 

We note that terms neglected in going from Eq. (16) 
to (17) would give a 1% correction to HDM and to y 
if these parameters were measured using Eq. (17). 
Equations (17) and (18) reduce to the expressions 
derived by Pincus when 6 = 90°, and the high-frequency 
relation (18) agrees with the results of Turov and 
Guseinov if Nx=0.l2>n The last term of (17) is an 
addition to the Pincus relations, which in principle 
permits all of the effective fields to be determined 
solely from high- and low-frequency resonance ex­
periments. This will be examined in more detail later. 

III. NORMAL MODES 

The fact that Eqs. (12) consist of two sets of de­
coupled relations initially permits us to introduce two 
arbitrary amplitudes, say Wi~=f exp(io)t) and m<r 
= £exp(zW). Then using Eqs. (12) to determine Wi+ 

and m2
+ and reverting back to the magnetization 

deviation variables by the aid of Eqs. (9), we obtain 

(19) 

where 5=1/^ if co = coi and d=r] if co=o>2. Any of the 
equations of motion (7) relates £ and f, so that by 
using (7a) we have 

£ 8(A+C)-(B+ico) 

f d(iu-B)-(A-C) 
(20) 

LOW FREQUENCY MODE HIGH FREQUENCY MODE 

FIG. 2. Normal modes with H0 = 0. The net magnetization of 
the low-frequency mode precesses about the x axis, whereas for 
the high-frequency mode, it lies along the axis. Modes degenerate 
with these have magnetizations precessing in the opposite sense. 
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FIG. 3. Normalized 
theoretical curves for the 
dependence of the reso­
nance field on orienta­
tion, Eq. (23). The pa­
rameters are P = [ (W/Y) 2 

-2HEHA'1/HDM2 and 
(T = HA/HE- Curves for 
cr=0 and cr = 10~3 would 
differ significantly only 
in the region 0<O.5°. 

0 5 vO 20 4 0 60 8 0 
0 (degrees) 

The modes can most easily be illustrated in the limit 
HQ=0, for which rj = 0. Then the amplitude ratio is 

for oo — ooi: 

f o r Go — 002: 

Z/?=-i(2Hs/H/yi\ 

Z/Z=i(2HE/HAy'\ 
(21) 

The magnitudes of these quantities are the ratios of 
major to minor axes of the ellipses traced out by MA 

and M 5 , as shown in Fig. 2. In the indicated limit, the 
Dzyaloshinsky-Moriya coupling is influential only in 
the equilibrium canting of the magnetizations and 
plays no part in the first-order motion. The illustrated 
modes are similar to those of a hexagonal antiferro-
magnet such as CsMnF3 which has a hard c axis with 
in-plane anisotropy but no D - M A X M B coupling.14 

However, when Ho^O, HDM can play an important 
role. For example, when HOHDM2>2HEHA and 0=90°, 
the ratio of the axis for the low-frequency mode, Eq. 
(20), reduces to 

£/f = ~i2EE/{Hi+H,HDMy12. (22) 

Fink has derived the rf susceptibilities16 and line-
widths17 for both the Dzyaloshinsky-Moriya coupled 
systems and those with single ion anisotropy; conse­
quently, these properties will not be considered here. 
His equations for the former coupling are still valid, 
provided Eq. (17) is used for the resonance frequency. 

IV. EXPERIMENTAL RESULTS 

The high-frequency resonance of Eq. (18) has been 
observed in only one system, MnC03, by Fink and 
Shaltiel13 and Richards,18 who find good agreement 
with experiment (see note added in proof). We shall not 
consider this mode further. 

The low-frequency mode in MnCC>3 has been in­
vestigated by Date19 and Borovik-Romanov et a/.,20 

16 H. J. Fink, Phys. Rev. 130, 177 (1963). 
17 H. J. Fink, Phys. Rev. 133, A1322 (1964). 
18 P. L. Richards, J. Appl. Phys. 35, 850 (1964). 
19 M. Date, J. Phys. Soc. Japan 15, 2251 (1960). 
20 A. S. Borovik-Romanov, N. M. Kreines, and L. A. Prozorova, 

Zh. Eksperim. i Teor. Fiz. 45, 64 (1963) [English transl.: Soviet 
Phys.—JETP 18, 46 (1964)]. 

and in aFe 2 0 3 by Anderson et al.21 Kumagai et al.22 

and by Tasaki and Iida.15 Frequency dependence on 
field at 6=90° has been verified up to about 15 kOe, 
but the orientation dependence has been examined 
only between 0=90° and 0—20° which is apparently 
not sufficiently close to the c axis to unambiguously 
reveal the presence of the last term in Eq. (17). De­
partures from the Pincus relation are displayed in the 
published figures for the smaller angles.19'22 In attempt­
ing to see whether these deviations were significant 
and revealed the cos20 term, we conducted resonance 
experiments on aFe203 , giving particular attention to 
the small 0, large H0 region. 

For fixed frequency experiments the inverse of Eq. 
(17) is useful: 

Ho - s in0+[s in 2 0+2p(2 sin20+a- cos20)]x'2 

HDM 

where 

2 sin20+<r cos20 
(23) 

= [(COX/T)2 

= HA/HE . 

- 2HEHA~\IH2BM , 

When a is negligible this reduces to the l/sin0 depend­
ence of Pincus. The effect of the cos20 term shown in 
Fig. 3, indicates that large p and a favor its detection. 
Unfortunately this also requires a large value of 
HO/HDM-

Synthetic single crystal platelets of aFe203, grown 
and kindly furnished by Dr. A. Tasaki of the Uni­
versity of Tokyo, approximately 2 mm in diameter 
and 0.5 mm thick with the c axis perpendicular to the 
plane, were glued against the narrow side of a micro­
wave guide near the end wall as shown in Fig. 4. All 
experiments were performed at room temperature. For 
the Ku band experiments, a 12-in. Varian magnet was 
rotated to vary 0, but for the higher frequency 8-mm 
experiments a transverse access Bitter solenoid was 
used and the waveguide itself was rotated by means of 
a rotating waveguide joint. The applied field Ho was 
modulated at 100 cps and the reflected microwave 
signal was monitored by a lock-in amplifier. 

FIG. 4. Geometry of microwave resonance experiments. The 
direction of Hvt was chosen so that its coupling to the weak 
magnetic moment would be essentially independent of 0. 

21 P. W. Anderson, F. R. Merritt, J. P. Remeika, and W. A. 
Yager, Phys. Rev. 93, 717 (1954). 

22 H. Kumagai, H. Abe, K. Ono, I. Hayashi, J. Shimada, and 
K. Iwanaga, Phys. Rev. 99, 1116 (1955). 
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20 40 60 80 100 
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FIG. 5. Experimental results for the dependence of the reso­
nance field on orientation for oFe203 at room temperature. The 
higher frequency data were obtained from a different sample than 
the lower. Solid curves are the respective theoretical expressions 
of Eq. (23) with o- = 0, normalized to agree with the data at 0 = 90°. 

Measurement of Ho versus (coi/7)2 from 13 to 35 
Gc/sec 0=90° resulted in a linear relation showing 
the predominant HQHDM term in Eq. (17). From this 
we obtain £ W = 2 . 1 X 1 0 4 Oe and 2 # E i 2 Y - 1 . 5 X 1 0 7 

Oe2, but these numbers varied by as much as 10% 
for the different samples investigated. 

The experimental angular dependence of Ho at 12.88 
and 33.79 Gc/sec is displayed in Fig. 5. For the former 
the resonance was pursued up to 6=2°, where the 
resonance became too broad to be detected. At the 
latter frequency, the linewidth increased from 200 Oe 
at 0=90° to 1700 Oe at (9=4.5°; smaller values of 6 
could not be examined with the available fields. No 
evidence of the cos2# term was seen at these frequencies 
to within the 5% experimental errors. 

Since at 33 Gc/sec, p~0 .3 , the curves of Fig. 3 
indicate that (J=HA/HE must be less than about 10~2 

to be undetectable with the present experimental pre­
cisions, although for small <s this is not a sensitive way 
to measure that ratio. Other crystals may have more 
favorable parameters which permit the cos2# term to 
be detected. MnC03 offers the advantage of a small 
HDM{3.7 kOe19) so that at 33 Gc/sec, p=12.5 ; how­
ever, HA is known to be 2.1 kOe13 which is a factor of 
10 smaller than that suspected to exist in aFe203 , and 
with the resulting cr~4X10 - 3 , the resonance would 
have to be observed at d<2° to detect the cos2# term. 
Consequently, fora:Fe203 and MnC0 3 it will be difficult 
to observe this term due to line broadening, even at 
high fields and frequencies. 

We note that a spurious indication of departure 

from the Pincus relation would be observed if the 
sample were misoriented, so that Ho were rotated in 
a plane which did not contain the c axis. Such might 
be the case for previous measurements on MnC03 ,19 

although there is no indication that this affects the 
present experiments. 

While performing the above experiments, we noticed 
that for some samples the resonance signal deteriorated 
due to the presence of Ho. While the amplitude de­
creased by a factor of 10 over a period of 12 min at 
5 kOe, the line broadened so that the product of ampli­
tude and linewidth at the inflection points remained 
constant to within 10%. This effect was independent 
of rf power over a 20-dB range. Annealing sufficed to 
prevent this except for the application of high fields 
(60 kOe). The cause of this effect is not yet understood. 

V. CONCLUSIONS 

Antiferromagnetic resonance conditions for a system 
with Dzyaloshinsky-Moriya coupling have been derived 
for H0 at an arbitrary direction to the hard axis and 
the normal modes described. An additional term to the 
Pincus relations is shown to be appreciable when H0 

is nearly parallel to the axis, provided HA/HE is not 
too small. Low-frequency resonance experiments on 
aFe 20 3 up to 60 kOe have failed to reveal a departure 
from the Pincus relations, thus indicating that HA/HE 
<10~2. A deterioration of the resonance signal due to 
the presence of a magnetic field has been observed, 
but its origin is uncertain. 

Note added in proof. We have observed antiferro­
magnetic and spin-flop resonances in synthetic and 
single-crystal aFe203 for temperatures between 4.2 and 
280°K utilizing 35, 70, and 120 Gc/sec radiation and 
pulsed magnetic fields. The spin-flop transition has also 
been observed directly by differential magnetic moment 
measurements23 and by Mossbauer techniques.24 The 
low-temperature value of Hc is approximately 65 kG, 
which demonstrates that, at least below TM, HA is much 
less than 104 Oe estimated earlier. Extrapolation of HA 

to r = 3 0 0 ° K shows that HA is much less than 104 Oe 
so that deviations from the Pincus equations should not 
readily be observable in aFe203. This work will be dis­
cussed in a future publication. 

23 S. Foner, International Conference on Magnetism, 1964, 
Nottingham, England, Paper L3-5 (to be published). 

24 N. Blum, A. J. Freeman, and L. Grodzins, Bull. Am. Phys. 
Soc. 9,465 (1964). 


